博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
day-19 多种优化模型下的简单神经网络tensorflow示例
阅读量:4625 次
发布时间:2019-06-09

本文共 7149 字,大约阅读时间需要 23 分钟。

        如下样例基于tensorflow实现了一个简单的3层深度学习入门框架程序,程序主要有如下特性:

        1、  基于著名的MNIST手写数字集样例数据:

        2、  加入衰减学习率优化,使得学习率可以根据训练步数指数级减少,在训练后期增加模型稳定性

        3、  加入L2正则化,减少各个权重值大小,避免过拟合问题

        4、  加入滑动平均模型,提高模型在验证数据上的准确性

        网络一共3层,第一层输入层784个节点的输入层,第二层隐藏层有500个节点,第三层输出层有10个节点。

# 导入模块库import tensorflow as tfimport datetimeimport numpy as np# 已经被废弃掉了#from tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.contrib.learn.python.learn.datasets import mnistfrom tensorflow.contrib.layers import l2_regularizer# 屏蔽AVX2特性告警信息import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'# 屏蔽mnist.read_data_sets被弃用告警import loggingclass WarningFilter(logging.Filter):    def filter(self, record):        msg = record.getMessage()        tf_warning = 'datasets' in msg        return not tf_warninglogger = logging.getLogger('tensorflow')logger.addFilter(WarningFilter())# 神经网络结构定义:输入784个特征值,包含一个500个节点的隐藏层,10个节点的输出层INPUT_NODE = 784OUTPUT_NODE = 10LAYER1_NODE = 500# 随机梯度下降法数据集大小为100,训练步骤为30000BATCH_SIZE = 100TRAINING_STEPS = 30000# 衰减学习率LEARNING_RATE_BASE = 0.8LEARNING_RATE_DECAY = 0.99# L2正则化REGULARIZATION_RATE = 0.0001MOVING_AVERAGE_DECAY = 0.99validation_accuracy_rate_list = []test_accuracy_rate_list = []# 定义前向更新过程def inference(input_tensor,avg_class,weights1,biase1,weights2,biase2):    if avg_class == None:        layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1) + biase1)        return tf.matmul(layer1,weights2) + biase2    else:        layer1 = tf.nn.relu(tf.matmul(input_tensor,avg_class.average(weights1)) + avg_class.average(biase1))        return tf.matmul(layer1,avg_class.average(weights2)) + avg_class.average(biase2)# 定义训练过程def train(mnist_datasets):    # 定义输入    x = tf.placeholder(dtype=tf.float32,shape=[None,784])    y_ = tf.placeholder(dtype=tf.float32,shape=[None,10])    # 定义训练参数    weights1 = tf.Variable(tf.truncated_normal(shape=[INPUT_NODE,LAYER1_NODE],mean=0.0,stddev=0.1))    biase1 = tf.Variable(tf.constant(value=0.1,dtype=tf.float32,shape=[LAYER1_NODE]))    weights2 = tf.Variable(tf.truncated_normal(shape=[LAYER1_NODE,OUTPUT_NODE],mean=0.0,stddev=0.1))    biase2 = tf.Variable(tf.constant(value=0.1,dtype=tf.float32,shape=[OUTPUT_NODE]))    # 前向更新    # 训练数据时,不需要使用滑动平均模型,所以avg_class输入为空    y = inference(x,None,weights1,biase1,weights2,biase2)    # 该变量记录训练次数,训练模型时常常需要设置为不可训练的变量,即trainable=False    global_step = tf.Variable(initial_value=0,trainable=False)    # 生成滑动平均模型,用于验证    variable_averages = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY,num_updates=global_step)    # 在所有代表神经网络的可训练变量上,应用滑动模型,即所有的可训练变量都有一个影子变量    variable_averages_ops = variable_averages.apply(tf.trainable_variables())    # 定义数据验证时,前向更新结果    average_y = inference(x,variable_averages,weights1,biase1,weights2,biase2)    # 计算交叉熵    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_,1),logits=y)    cross_entropy_mean = tf.reduce_mean(cross_entropy)    # 计算L2正则化损失    regularizer = l2_regularizer(REGULARIZATION_RATE)    regularization = regularizer(weights1) + regularizer(weights2)    # 计算总损失Loss    loss = cross_entropy_mean + regularization    # 定义指数衰减的学习率    learning_rate = tf.train.exponential_decay(learning_rate=LEARNING_RATE_BASE,global_step=global_step,                                               decay_steps=mnist_datasets.train.num_examples / BATCH_SIZE,                                               decay_rate=LEARNING_RATE_DECAY)    # 定义随机梯度下降算法来优化损失函数    train_step = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\        .minimize(loss = loss,global_step = global_step)    # 每次前向更新完以后,既需要反向更新参数值,又需要对滑动平均模型中影子变量进行更新    # 和train_op = tf.group(train_step,variable_averages_ops)是等价的    with tf.control_dependencies([train_step,variable_averages_ops]):        train_op = tf.no_op(name='train')    # 定义验证运算,计算准确率    correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))    accuracy = tf.reduce_mean(tf.cast(x=correct_prediction,dtype=tf.float32))    with tf.Session() as sess:        init = tf.global_variables_initializer()        sess.run(init)        validate_feed = {x:mnist_datasets.validation.images,                         y_:mnist_datasets.validation.labels}        test_feed = {x:mnist_datasets.test.images,                     y_:mnist_datasets.test.labels}        for i in range(TRAINING_STEPS):            # 每1000轮,用测试和验证数据分别对模型进行评估            if i % 1000 == 0:                validate_accuracy_rate = sess.run(accuracy,validate_feed)                print("%s: After %d training steps(s),validation accuracy"                      "using average model is %g "%(datetime.datetime.now(),i,validate_accuracy_rate))                test_accuracy_rate = sess.run(accuracy, test_feed)                print("%s: After %d training steps(s),test accuracy"                      "using average model is %g " % (datetime.datetime.now(),i, test_accuracy_rate))                validation_accuracy_rate_list.append(validate_accuracy_rate)                test_accuracy_rate_list.append(test_accuracy_rate)            # 获得训练数据            xs,ys = mnist_datasets.train.next_batch(BATCH_SIZE)            sess.run(train_op,feed_dict={x:xs,y_:ys})# 主程序入口def main(argv=None):    mnist_datasets = mnist.read_data_sets(train_dir='MNIST_data/',one_hot=True)    train(mnist_datasets)    print("validation accuracy rate list:",validation_accuracy_rate_list)    print("test accuracy rate list:",test_accuracy_rate_list)# 模块入口if __name__ ==  '__main__':    tf.app.run()

       每1000轮,使用测试和验证数据分别对模型进行评估,绘制出如下准确率曲线图,其中蓝色曲线表示验证数据准确率,深红色曲线表示测试数据准确率,不难发现,通过引入滑动平均模型,模型在验证数据上有更好的准确率。

       

       进一步,通过如下代码,我们对两个准确率求解相关系数:

import numpy as npimport mathx = np.array([0.1748, 0.9764, 0.9816, 0.9834, 0.982, 0.984, 0.9838, 0.9842, 0.9846, 0.985, 0.9848, 0.9854, 0.9854, 0.9838, 0.9846, 0.9838, 0.9848, 0.9844, 0.9846, 0.9858, 0.9846, 0.9848, 0.9852, 0.9844, 0.9846, 0.9848, 0.9852, 0.9846, 0.9852, 0.9854])y = np.array([0.1839, 0.9751, 0.9796, 0.9807, 0.9813, 0.9825, 0.983, 0.983, 0.983, 0.9829, 0.9836, 0.9831, 0.9828, 0.9832, 0.9828, 0.9829, 0.9836, 0.9835, 0.9838, 0.9833, 0.9833, 0.9833, 0.9833, 0.9838, 0.9835, 0.9838, 0.9829, 0.9836, 0.9834, 0.984])# 计算相关度def computeCorrelation(x,y):    xBar = np.mean(x)    yBar = np.mean(y)    SSR = 0.0    varX = 0.0    varY = 0.0    for i in range(0,len(x)):        diffXXbar = x[i] - xBar        difYYbar = y[i] - yBar        SSR += (diffXXbar * difYYbar)        varX += diffXXbar**2        varY += difYYbar**2    SST = math.sqrt(varX * varY)    return SSR/SST# 计算R平方def polyfit(x,y,degree):    results = {}    coeffs = np.polyfit(x,y,degree)    results['polynomial'] = coeffs.tolist()    p = np.poly1d(coeffs)    yhat = p(x)    ybar = np.sum(y)/len(y)    ssreg = np.sum((yhat - ybar)**2)    sstot = np.sum((y - ybar)**2)    results['determination'] = ssreg/sstot    return resultsresult = computeCorrelation(x,y)r = resultr_2 = result**2print("r:",r)print("r^2:",r*r)print(polyfit(x,y,1)['determination'])

        结果显示,二者相关系数大于0.9999,这意味着在MNIST问题上,完全可以模型在验证数据上的表现来判断模型的优劣。当然,这个仅仅是MNIST数据集上,在其它问题上,还需要具体分析。

C:\Users\Administrator\Anaconda3\python.exe D:/tensorflow-study/sample.pyr: 0.9999913306679183r^2: 0.9999826614109940.9999826614109977

 

转载于:https://www.cnblogs.com/python-frog/p/9420800.html

你可能感兴趣的文章
做前端要做的6大事
查看>>
LeetCode 813. Largest Sum of Averages
查看>>
vSphere、Hyper-V与XenServer 你选哪个?
查看>>
java.lang.UnsupportedClassVersionError
查看>>
实现接口必须要加注解@Override吗
查看>>
apicloud UISearchBar 使用方法
查看>>
【spring+websocket的使用】
查看>>
mongo二维数组操作
查看>>
localStorage之本地储存
查看>>
Archlinux 交换左Ctrl和Cap键
查看>>
#openstack故障处理汇总
查看>>
搜索旋转排序数组 II
查看>>
20、docker swarm
查看>>
psp工具软件前景与范围文档
查看>>
day06-三元表达式
查看>>
C# DateTime.Now详细用法
查看>>
Php中"{}"大括号的用法总结(转)
查看>>
JavaScript内存优化
查看>>
BZOJ1059: [ZJOI2007]矩阵游戏(二分图匹配)
查看>>
P3385 【模板】负环
查看>>